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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Identifying the potential for SARS-CoV-2 reinfection is crucial for understanding possible

long-term epidemic dynamics. We analysed longitudinal PCR and serological testing data

from a prospective cohort of 4,411 United States employees in 4 states between April 2020

and February 2021. We conducted a multivariable logistic regression investigating the

association between baseline serological status and subsequent PCR test result in order to

calculate an odds ratio for reinfection. We estimated an odds ratio for reinfection ranging

from 0.14 (95% CI: 0.019 to 0.63) to 0.28 (95% CI: 0.05 to 1.1), implying that the presence

of SARS-CoV-2 antibodies at baseline is associated with around 72% to 86% reduced

odds of a subsequent PCR positive test based on our point estimates. This suggests that

primary infection with SARS-CoV-2 provides protection against reinfection in the majority of

individuals, at least over a 6-month time period. We also highlight 2 major sources of bias

and uncertainty to be considered when estimating the relative risk of reinfection, confound-

ers and the choice of baseline time point, and show how to account for both in reinfection

analysis.
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Introduction

The rapid global spread of COVID-19 throughout 2020 occurred as a result of the introduction

of a highly transmissible virus, SARS-CoV-2, into populations with little preexisting immunity

[1]. Identifying the extent and duration of protective immunity afforded by natural infection is

therefore of crucial importance for understanding possible long-term epidemic dynamics of

SARS-CoV-2 [2].

Studies have estimated that over 95% of symptomatic COVID-19 cases develop antibodies

against SARS-CoV-2, with most individuals developing antibodies within 3 weeks of symptom

onset [3,4]. Several serological studies have also characterised individual-level immune dynam-

ics, with some finding evidence for antibody waning and others for sustained antibody

responses over several months [5–10]. Antibody kinetics are thought to vary between individ-

uals and are possibly associated with severity of illness, where asymptomatic or mildly symp-

tomatic individuals may develop lower levels of antibodies that wane more rapidly [3,7,11].

While neutralising antibodies are thought to be associated with protection from reinfection,

there are still limited studies on the impact of postinfection seropositivity on future reinfection

risk [12]. Confirmed cases of reinfection with SARS-CoV-2 have been reported since August

2020 [13]. However, existing large studies examining the relative risk of reinfection in antibody

positive individuals have typically involved specific cohorts who may not be representative of

the wider community, such as closed communities or healthcare worker cohorts [14–17]. To

evaluate the relative risk of SARS-CoV-2 infection and reinfection over time, we analysed PCR

and serological testing data from a prospective cohort of SpaceX employees in the US between

April 2020 and February 2021 [18,19].

Results

Of 4,411 individuals enrolled, 309 individuals tested seropositive during the study period (Fig

1). This resulted in an overall adjusted percentage ever seropositive of 8.2% (95% CI: 7.3% to

9.1%) by the end of August 2020, after the final round of serological testing (Fig 2B). Here,

imperfect test sensitivity and specificity were adjusted for using the Rogan–Gladen correction

[20]. We defined a possible reinfection as a new positive PCR test more than 30 days after ini-

tial seropositive result. This identified 14 possible reinfections with a median time of 66.5 days

between initial seropositive test and PCR positive test (Fig 2C).

SARS-CoV-2 infection and reinfection

We estimated the odds ratio for SARS-CoV-2 reinfection using multivariable logistic regres-

sion, to adjust for any background individual-level variation in the risk of infection (see Meth-

ods). This required us to choose a cutoff week in order to define baseline seroprevalence and

the subsequent observation period for PCR testing. To examine how our estimate for the odds

ratio for reinfection varied depending on the cutoff week chosen, we repeated the analysis

using every possible cutoff week.

We considered that the most robust estimation of the odds ratio for reinfection would

occur midepidemic when using cutoff weeks in between 2 “waves” of the epidemic seen in the

study cohort. We validated this methodological assumption by conducting a simulation study

(see Fig A in S2 Text).

We defined a midepidemic period in between 2 epidemic waves where PCR positivity in

the study cohort was below the WHO specified threshold of 5%, which occurred between July

26, 2020 and September 27, 2020 (Fig 2A). During these cutoff weeks, estimates of the odds

ratio for reinfection (Fig 2D) ranged from 0.14 (95% CI: 0.019 to 0.63) to 0.28 (95% CI: 0.05 to

1.1). Our point estimates suggest that the presence of SARS-CoV-2 antibodies confers around
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72% to 86% protection against reinfection with SARS-CoV-2, at least over a 6-month period.

As a sensitivity analysis, we conducted the same analysis but excluding records where individ-

uals had recorded a specific trigger reason for testing such as symptom onset or potential expo-

sure (and so reflecting individuals tested at random). Considering the weeks between July 26,

2020 and September 27, 2020, we found estimates of the odds ratio for reinfection ranged

from 0.18 (95% CI: 0.024 to 0.80) to 0.36 (95% CI: 0.06 to 1.5).

In the adjusted analyses, odds ratio estimates for reinfection converged to similar values for

cutoffs spanning a period after the first peak of infection in early July. By this point, sufficient

numbers of participants had been both recruited and tested seropositive (see Fig 2B) that we

had enough data to distinguish infection dynamics in seropositive and seronegative groups.

Adjusted odds ratio estimates for reinfection then lost precision when using late cutoff weeks

from mid-December onwards due to increasingly small numbers of participants experiencing

PCR infection after the cutoff point, consistent with our simulation study (see S2 Text).

Unadjusted odds ratio estimates tended to overestimate the odds ratio for reinfection com-

pared with primary infection, particularly when using early cutoff weeks (Fig 3). Notably, with

early cutoff weeks the unadjusted analysis estimated a higher odds of reinfection compared to

primary infection, albeit with wide CIs. This is the result of a subset of individuals who are at

higher risk of initial seroconversion (who would be included in analyses at earlier time thresh-

olds) and also at higher risk of later reinfection, giving a biased estimate of the association

between antibodies and subsequent infection when using earlier cutoff weeks.

Discussion

We identified 14 possible reinfections out of 309 seropositive individuals in the prospective

seroepidemiological cohort between April 2020 and February 2021, estimating an odds ratio

for reinfection ranging from 0.14 (95% CI: 0.019 to 0.63) to 0.28 (95% CI: 0.05 to 1.1). This

provides evidence that primary infection with SARS-CoV-2 results in protection against

Fig 1. (A) Number of PCR tests and PCR positive tests in the cohort between April 5, 2020 and January 31, 2021 from 3,296

participants. (B) Number of serological tests and seropositive tests between March 29, 2020 and August 23, 2020 from 4,411 participants.

Data underlying this figure can be found in https://github.com/EmilieFinch/covid-reinfection.

https://doi.org/10.1371/journal.pbio.3001531.g001
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reinfection in the majority of individuals, at least over a sixth month time period. Our findings

are broadly consistent with estimates of 0.17 (95% CI 0.13 to 0.24) odds ratio [14] and 0.11

(0.03 to 0.44) incidence rate ratio [15] for healthcare workers, 0.18 (0.11 to 0.28) incidence rate

ratio for military recruits [16], and 0.195 (95% CI 0.155 to 0.246) incidence rate ratio from a

Danish population-level study [21].

Our analysis addressed 2 key sources of bias and uncertainty in estimating the relative risk

of reinfection. First, confounders may inflate estimates; if a specific subset of the cohort is at

higher risk of infection (e.g., due to underlying health conditions or increased risk of

Fig 2. (A) PCR positivity (%) in the cohort between April 5, 2020 and January 31, 2021. (B) Percentage ever seropositive in the

cohort (number ever seropositive/cumulative number enrolled) between March 29, 2020 and August 23, 2020. Note that the

percentage ever positive decreases initially as participants continue to be enrolled in the study. (C) Number of possible reinfections in

cohort over time (defined as a new positive PCR test more than 30 days after initial seropositive result). (D) Odds ratio estimates

comparing odds of reinfection in the seropositive group with odds of primary infection in the seronegative group, estimated using

logistic regression and adjusted for potential confounders. The estimates are presented with their associated 95% CIs and with the

cutoff week used to define baseline seroprevalence on the x-axis. Data underlying this figure can be found in https://github.com/

EmilieFinch/covid-reinfection.

https://doi.org/10.1371/journal.pbio.3001531.g002
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exposure), these participants will be more likely to be both initially seropositive and to have a

subsequent reinfection. Second, the time period considered could increase uncertainty; defin-

ing the baseline seroprevalence at an early time point means few will be seropositive, whereas

defining it at a later point means there is less time to observe possible reinfections. We

accounted for these 2 factors by adjusting for key confounders to calculate an adjusted odds

ratio for reinfection. We then investigated how changing the cutoff date to define baseline

seroprevalence impacted the accuracy of the adjusted odds ratio calculated. We assumed that

for a 2-wave epidemic scenario, a cutoff week in the period in between the 2 waves of infection

risk would result in the most robust estimates of the odds ratio for reinfection, which we vali-

dated using a simulation study (see S2 Text). This suggests that the robustness of estimates of

the relative risk of reinfection will be sensitive to the study period chosen, relative to popula-

tion-level epidemic dynamics.

There are several limitations to the underlying data that should be considered when inter-

preting these findings. This prospective cohort was recruited opportunistically from employees

at one US company and is unlikely to be representative of the general population. However, as

we did not identify any workplace outbreaks, infections in this cohort are likely to be more

reflective of community transmission than in healthcare worker cohorts or other specialised

populations. Additionally, we only considered possible reinfections (as opposed to probable or

true reinfections). As possible reinfections did not meet a stringent case definition, such as

confirmation through genomic sequencing, they may include cases of prolonged viral shed-

ding following an initial infection. This would result in an overestimation of the odds ratio for

reinfection and so our analysis reflects the minimum possible effect of antibodies on future

SARS-CoV-2 infection risk. Finally, the date of infection among seropositive participants is

unknown, limiting inference on exact duration of protection.

As well as quantifying the relative risk of reinfection over a 6-month period among a pro-

spectively followed workplace population, our study highlights the importance of accounting

for both individual-level heterogeneity in infection risk and population-level variation in epi-

demic dynamics when assessing the potential for reinfections.

Fig 3. (A) Unadjusted odds ratio estimates comparing odds of reinfection in the seropositive group with odds of

primary infection in the seronegative group. The estimates are presented with their associated 95% CIs and with the

cutoff week used to define baseline seroprevalence on the x-axis. (B) Odds ratio estimates comparing odds of

reinfection in the seropositive group with odds of primary infection in the seronegative group, estimated using logistic

regression and adjusted for potential confounders. The estimates are presented with their associated 95% CIs and with

the cutoff week used to define baseline seroprevalence on the x-axis. Data underlying this figure can be found in

https://github.com/EmilieFinch/covid-reinfection.

https://doi.org/10.1371/journal.pbio.3001531.g003
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Methods

Seroepidemiological cohort description

We used data from a seroepidemiological study of US employees at SpaceX, as described previ-

ously [19]. In brief, this study involved employees from 7 work locations in California, Florida,

Texas, and Washington State, with ages ranging from 18 to 71. A total of 4,411 employees vol-

unteered to participate in the study and were enrolled from approximately 8,400 total employ-

ees. All employees were invited to participate by email, and there were no exclusion criteria.

Study participants were offered SARS-CoV-2 IgG receptor binding domain (RBD) antibody

testing with an in-house ELISA assay with 82.4% sensitivity and 99.6% specificity [22]. Sero-

logical samples were taken during 4 rounds of testing between April and September 2020. A

questionnaire including demographic, symptom, and exposure information was conducted at

enrolment and with each round of serological testing. Individuals continued to be enrolled

throughout the study period, and around half of the total participants (48%) were tested at

more than 1 time point. Participants occupied a range of job positions within SpaceX includ-

ing office-based and factory-based jobs. Additionally, symptomatic and asymptomatic PCR

testing were widely available for employees using the Infinity BiologiX (IBX) TaqPath

rRT-PCR assay, with data available from April 2020 to January 2021. Employees could request

a test for any reason, and testing was also specifically performed for symptomatic individuals,

individuals with potential exposure, and mission critical employees. Both serology and PCR

testing data were available for 1,800 individuals.

Ethics statement

The study protocol was approved by the Western Institutional Review Board (ref 20200991).

The use of deidentified data and biological samples was approved by the Mass General Brig-

ham Healthcare Institutional Review Board (ref 2020P001166). Secondary data analysis was

approved by the LSHTM Observational Research Ethics Committee (ref 22466). All partici-

pants provided written informed consent.

Statistical analysis

To estimate the odds ratio for SARS-CoV-2 reinfection, we conducted multivariable logistic

regression analysis investigating the association between baseline serological status and subse-

quent PCR test result, given a test was sought.

The choice of cutoff week used to define participants’ baseline seroprevalence and the sub-

sequent observation period for PCR testing have important implications in the estimation of

the odds ratio for reinfection. For instance, a cutoff week early in the study period will result in

few seropositive individuals, while a cutoff week later in the study period leaves less time to

observe subsequent PCR testing and detect possible reinfections, impacting the accuracy of

estimates. To assess how the choice of cutoff week affected estimates of the odds ratio for rein-

fection, we repeated the multivariable logistic regression for every possible cutoff week. We

assumed the most robust estimation of the relative risk of reinfection would occur in the

between the 2 “waves” of infection risk seen in the study cohort. We validated this assumption

by conducting a simulation analysis using a known underlying probability distribution of

infection and reinfection (see S2 Text).

Potential confounding variables included age, sex, race, ethnicity, BMI, state, work location,

job category, household size, history of chronic disease, history of smoking, and test frequency.

We used a backwards selection procedure to select which variables to adjust for in our analy-

ses, minimising root mean square error (RMSE) at each step [23]. Age and sex were considered
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“forced” variables, which we decided to control for a priori and were adjusted for in all analy-

ses [24,25]. We conducted variable selection separately for each cutoff week and the variable

sets adjusted for in each regression analysis are listed in Table A in S1 Text. For most cutoff

weeks (specifically those between May 19, 2020 and November 22, 2020), all potential con-

founders were adjusted for, while early weeks (between April 26, 2020 and May 3, 2020) and

late weeks (between December 20, 2020 and January 17, 2021) adjusted for a subset of potential

confounders.

As a sensitivity analysis, we performed the same analysis but excluding records where indi-

viduals had recorded a specific reason for test such as onset of symptoms or potential exposure

to a COVID-19 case. As such, this sensitivity analysis included only individuals tested at

random.

We investigated the propensity to be tested among seronegative and seropositive individu-

als for each cutoff week by examining the percentage of those enrolled in the study by each cut-

off week who had at least 1 test in the subsequent observation period and found that for cutoff

weeks from mid-July onwards they were broadly similar between the 2 groups (Fig 4). How-

ever, the average distribution of test frequency differed between the seropositive and seronega-

tive groups, with higher frequency of testing more common in the seronegative group. To

account for this, we included PCR test frequency as a potential confounder in our analysis,

defined as the number of PCR tests each individual took during the observation period (1 to 2,

3 to 5, or 6+). Protection against infection with SARS-CoV-2 conferred by the presence of anti-

bodies was estimated such that

ProtectionAB ¼ 1 � AORReinfection

Analysis was conducted in R version 4.0.3. Code to reproduce the figures and simulation

analysis presented here can be found at https://github.com/EmilieFinch/covid-reinfection.

Fig 4. Propensity to seek a PCR test between the seronegative and seropositive groups, for each cutoff week

considered in the main analysis. This was calculated as the percentage of those enrolled by the cutoff week shown on

the x-axis who received at least 1 PCR test in the subsequent observation period. Data underlying this figure can be

found in https://github.com/EmilieFinch/covid-reinfection.

https://doi.org/10.1371/journal.pbio.3001531.g004
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