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ABSTRACT
Introduction: Streptococcus pneumoniae is the leading cause of invasive bacterial disease, globally. 
Despite antiretroviral therapy, adults infected with human immunodeficiency virus (HIV) are also at high 
risk of pneumococcal carriage and disease. Pneumococcal conjugate vaccines (PCVs) provide effective 
protection against vaccine serotype (VT) carriage and disease in children, and have been introduced 
worldwide, including most HIV-affected low- and middle-income countries. Unlike high-income coun-
tries, the circulation of VT persists in the PCV era in some low-income countries and results in a 
continued high burden of pneumococcal disease in HIV-infected adults. Moreover, no routine vaccina-
tion that directly protects HIV-infected adults in such settings has been implemented.
Areas covered: Nonsystematic review on the pneumococcal burden in HIV-infected adults and vaccine 
strategies to reduce this burden.
Expert opinion: We propose and discuss the relative merit of changing the infant PCV program to use 
(1a) a two prime plus booster dose schedule, (1b) a two prime plus booster dose schedule with an 
additional booster dose at school entry, to directly vaccinate (2a) HIV-infected adults or vaccinating (2b) 
HIV-infected pregnant women for direct protection, with added indirect protection to the high-risk 
neonates. We identify key knowledge gaps for such an evaluation and propose strategies to overcome 
them.
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1. Introduction

Streptococcus pneumoniae is a major cause of global child-
hood mortality [1,2], particularly in <5 year-olds, and also 
causes a high burden of disease among the elderly and 
human immunodeficiency virus (HIV) infected adults [3–5]. 
In the last two decades, infant pneumococcal conjugate 
vaccine (PCV) programs have substantially reduced the bur-
den of invasive pneumococcal disease (IPD) and mortality in 
vaccinees [2,6–13]. In contrast to high-income countries 
though [14,15], routine infant PCV programs in the most 
low-income sub-Saharan African (sSA) countries have led to 
a less pronounced herd effect with a continued circulation 
of vaccine serotypes (VT), especially in the unvaccinated 
adult population [12,16–20] including those with HIV infec-
tion and thus those at high risk for pneumococcal disease 
[21]. For instance, an over a 3.5-year study in Malawi, post- 
PCV VT carriage in HIV-infected adults only declined from 
15.2%, 95%CI, 10.8–20.9 in survey 1 to 8.9% 95%CI 5.7–13.7 
in survey 7 [20]. While the underlying reasons have not 
been fully established they may include a higher infection 
pressure as a result of more frequent human contacts and 
lower vaccine uptake [18].

HIV infection can substantially increase the risk of IPD 
among otherwise healthy older children or adults on antire-
troviral therapy (ART) [5,22–24]. This is in part related to the 
impairment of both the cell-mediated and humoral arms of 
the immune system [25,26]. Capsule-specific immunoglobulin 
G (IgG) antibodies as well as T and B cell-mediated protein- 
specific responses play a central role in the control of pneu-
mococcal colonization and infection [27–29]. However, HIV 
affects both T and B cell functions, resulting in the impairment 
of humoral responses to extracellular pathogens such as pneu-
mococci [30–32] and control of pneumococcus at the mucosal 
level. ART only partially reconstitutes the immune system of 
HIV-infected individuals by increasing B and T-lymphocyte 
numbers and functionality [25,27]. Deficiencies in humoral 
response due to depleted or persistent defects in memory 
cell function persist after ART initiation and disproportionately 
so at the mucosal level [33,34]. Thus, HIV-infected individuals 
on ART remain with impaired antibody responses to natural 
pneumococcal infections and vaccination [35,36].

In this article, we present a review of the pneumococcal 
burden in HIV-infected adults in the presence of mature PCV 
infant programs, particularly in sub-Saharan Africa (sSA). We 
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highlight four options for vaccine strategies that could be 
implemented to address this disease burden and discuss the 
key evidence gaps to enable a solution to be identified.

2. Pneumococcal burden in African HIV-infected 
adults

Without ART, the risk of IPD in HIV-infected adults is reported to be 
30–300 times higher than in HIV-uninfected individuals, and with 
an about sixfold higher risk of recurrence [25,37–39]. Although ART 
has reduced the risk of IPD and subsequent mortality [3,40], the risk 
remains more than 30-fold higher than in HIV-uninfected adults 
[41] with an incidence of >50 cases per 100,000 person years 
[3,5,42]. The introduction of infant PCV programs in South Africa 
and Kenya has led to a further reduction in VT-IPD and pneumo-
coccal pneumonia incidence in HIV-infected adults [9,43,44].

HIV prevalence in African adults varies widely, with 
Swaziland reporting the highest at 27.2% [45]. In 2017, all 
sSA countries reported >10% national or subnational adult 
HIV prevalence [45]. It has been observed that countries with 
suboptimal PCV herd protection and substantial residual vac-
cine-serotype circulation, like Malawi and Mozambique, also 
report a high prevalence of HIV [46]. HIV prevalence amongst 
children has fallen as a consequence of the effective preven-
tion of vertical transmission of HIV and ART use [47–50]. Only a 
small proportion of infants are infected with HIV and are 
already included in the PCV infant programs. HIV prevalence 
remains high as a consequence of improved survival with ART 
in adults. Thus, a large proportion of adults at high risk of 
pneumococcal disease attributable to HIV infection will remain 
a concern in the years to come in sSA.

3. Pneumococcal vaccines in HIV-infected adults

Since the 1980s, the 23-valent pneumococcal polysaccharide vac-
cine (PPV23) has been approved for use in HIV-infected adults for 
direct protection against a wide range of serotypes, in most high- 

income countries where it is reported to be safe, including in HIV- 
infected but otherwise healthy adults [51–54]. However, evidence 
of PPV23’s efficacy in HIV-infected adults is somewhat controversial 
[53,55–60], with the suggestion of potential hyporesponsiveness in 
individuals with advanced immunosuppression, and a reported 
increase, albeit not statistically significant, in the incidence of all- 
cause pneumonia when given to HIV-infected Ugandan adults, not 
on ART [61]. Estimates of PPV23 efficacy in HIV-infected adults are 
highly heterogeneous which may be linked to differences in HIV 
viral load and ART status at the time of vaccination [25,61–64].

PCVs are more immunogenic than PPV23 in HIV-infected 
adults [23,65] and are highly efficacious in preventing VT- 
disease in HIV-uninfected children and adults [6,66]. Two for-
mulations, a 10- and a 13-valent product, are currently in use 
worldwide. They have comparable effectiveness and have 
been licensed based on their noninferiority to a previous 7- 
valent formulation (PCV7) [67]. While the efficacy of PCVs 
against VT-disease in HIV-infected children is somewhat infer-
ior to that of HIV-uninfected children (51% vs 77%) [6], the 
efficacy against carriage is similar irrespective of HIV status 
[68]. PCV7 has been shown to be immunogenic [69] and 74% 
efficacious against VT-IPD in HIV-infected adults, with the 
highest efficacy within the first 12 months of vaccination 
even in those with CD4+ count <200 cells/mm3 and with 
unsuppressed HIV viral load at vaccination [65,70]. Further 
evidence on PCV13 efficacy of 75% against VT-IPD and 72.8% 
against VT community-acquired pneumonia in older adults 
(aged ≥65 years) have been reported in the Netherlands and 
the United States, respectively [66,71,72].

In many high-income countries PCV is recommended for 
use as priming of HIV-infected adults followed by a PPV23 
booster [52,73,74], which acts only against IPD. This is despite 
the limited PCV serotype disease incidence in these settings as 
a result of effective herd effects from infant PCV programs 
[75]. However, no such pneumococcal immunization program 
for HIV-infected adults exists in low-income African countries 
[76], where the highest disease burden exists [2]. 
Implementation barriers include the high costs of PCV [77] 
and a limited amount of evidence on effective and cost-effec-
tive vaccine strategies to address the high pneumococcal 
disease burden among HIV-infected adults in Africa.

4. Optimal vaccination strategies

We propose two potential approaches for reducing the 
disproportionate burden of pneumococcal disease in HIV- 
infected African adults: through (1) expanded indirect protec-
tion or (2) introduction of direct protection. For expanded 
protection, options include either (1a) changing the three- 
doses infant PCV schedule to a two prime plus boost schedule 
with potentially longer-lasting protection and greater herd 
protection against IPD in HIV-infected adults or (1b) using a 
three dose prime-boost strategy but with a fourth dose given 
as an additional booster at school entry to further enhance the 
duration of protection and thereby limit onward transmission. 
Direct protection could be achieved by (2a) vaccinating all 
HIV-infected adults to confer direct protection, or (2b) 

Article highlights

● Circulation of VTs persists in the PCV era in some low-income coun-
tries and results in a continued high and potentially vaccine-preven-
table burden of pneumococcal disease in HIV-infected adults.

● Routine pneumococcal vaccination programs for HIV-infected adults 
are not implemented in low-income countries.

● Mitigation of the VT-disease burden in HIV-infected adults in low- 
income countries may be achieved either by added direct protection 
or increased indirect protection from the infant program (via 
increased coverage or a change in vaccine schedule).

● For added direct protection both PCV and PPV are licensed and used 
in high-income countries. PCV is more immunogenic but also sub-
stantially more expensive and has inferior serotype coverage.

● For added indirect protection a change in infant immunization sche-
dule to stipulate longer-lasting protection may largely mitigate the 
risk for vaccine-preventable pneumococcal disease in the HIV- 
infected.

● Both strategies will need a formal evaluation of their likely effective-
ness and cost-effectiveness.
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vaccinating HIV-infected pregnant women which has the addi-
tional benefit of protecting the young infant via the transpla-
cental transfer of antibody and reduced maternal exposure 
Figure 1.

4.1. (1a) Switch from 3p+0 to 2p+1 PCV schedule to 
potentially increase herd protection

The World Health Organization currently recommends a three 
dose schedule administered either as three doses in early 
infancy (3p+0) or as two infant priming doses followed by a 
booster typically at 9–12 months (2p+1) [67]. In contrast to 
high-income countries, the vast majority of Africa opted for a 
3p+0 schedule based on prioritization of direct protection 
against the high disease burden in early childhood, alignment 
with other routine immunizations, and concerns about poten-
tially low booster dose coverage in a 2p+1 schedule. A notable 
exception is South Africa where the 2p+1 PCV schedule was 
introduced in 2009 with a booster dose at 9 months to align 
with measles vaccine dose 1 [8,9,78].

In theory, a third dose given as a booster to 9–12 month 
olds elicits high levels of an antibody that extend protection 
against VT-carriage acquisition into early or preschool age and 
hence further interrupt transmission in one of the key age 
groups for pneumococcal spread [79,80]. While trials to test 
this hypothesis is ongoing [81,82], there is currently no clear 
evidence to confirm that a 2p+1 schedule would induce 
superior herd protection in those African countries that have 
been using a 3p+0 with unsatisfactory indirect effects [67].

For now, a conclusive comparison of the differential impact 
of the two vaccine schedules across countries is hindered by 
the strong correlation between vaccine schedule and pneu-
mococcal transmission intensity. Most high-income countries 
have been using 2p+1, and most African countries, typically 
with higher overall carriage prevalence, have been using 3p 
+0. Exceptions to this include South Africa introducing PCV in 
a 2p+1 schedule and Australia using a 3p+0 (but switching to 
a 2p+1 as a result of breakthrough disease in the PCV13 era) 
[83,84]. South Africa has experienced substantial reductions in 
VT-carriage and IPD in unvaccinated populations including 
HIV-infected adults [44]. Other low-income African countries 
like Malawi [16,20], Mozambique [19], and the Gambia [85] 
have substantially less evidence of herd immunity from their 
mature PCV infant programs with overall residual VT-carriage 
prevalence of 13.9%, 19.7%, and 11.4%, respectively [46], at a 
minimum third dose vaccine coverage rate of ≥81% [20,86,87].

4.2. (1b) Switch from 3p+0 to 2p+1(+1) PCV schedule to 
increase herd protection

A switch from 3p+0 to a 2p+1 schedule would not have major 
cost implications. Also, if indeed with the addition of a booster 
dose herd effect can be enhanced, the impact of such sche-
dule change extends beyond just HIV-infected adults and will 
benefit other unvaccinated individuals as well. However, herd 
immunity is the result of a complex interplay of factors includ-
ing bacterial physiology, booster dose coverage, the average 
age of pneumococcal carriage, duration of vaccine protection 

Figure 1. Schematic of potential pneumococcal vaccine strategies against invasive pneumococcal disease (IPD) in HIV-infected adults through indirect (1) and direct 
(2) approaches. Change the infant PCV schedule from 3p+0 to 2p+1 to enhance herd immunity against IPD in HIV-infected adults through a single booster dose (1a), 
change the infant PCV schedule from 3p+0 to 2p+1(+1) to enhance herd immunity against IPD in HIV-infected adults through double booster doses (1b), vaccinate 
HIV-infected adults for direct protection (2a), vaccinate HIV-infected pregnant women for direct protection, with some indirect protection for their neonates (2b). 
Option 1a will not require any additional vaccine doses as it simply rearranges the timing of the three-dose schedule. Option 1b will need additional vaccine doses 
equivalent to the number of 5 -year-old children in a country per year (e.g. about 300,000 doses per annum for Malawi). Option 2a will need one additional dose of 
PCV and one of PPV for each HIV-infected adult (e.g. assuming revaccination of the 970,000 HIV-infected adults in Malawi (http://aidsinfo.unaids.org/) every 10 years 
would use about 200,000 doses per annum, although the rate of new HIV infections is lower than that). The last option 2b will need one additional dose of PCV and 
one of PPV for each HIV-infected pregnant women (e.g. 90,000 doses per annum for the about 45,000 HIV-infected pregnant women in Malawi each year). Options 
1a and 1b are likely to have large impact because of their potential to elicit herd immunity, however, to date it is not well established that herd immunity would 
indeed be enhanced through a booster dose schedule (several trials are under way to assert this). Option 1b offers less uncertainty due to extra dose included. 
Option 2a only provides direct protection against vaccine serotypes to HIV-infected adults while 2b will see only a small subset of that vaccinated. There is limited 
uncertainty for the impact of the latter two strategies as PCV’s efficacy is relatively well established in the two groups.
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against the carriage, and social mixing patterns [88–90]. 
Additionally, the high average age of carriage, intense social 
mixing, and the waning of PCV protection against carriage 
(estimated half-life is 4–6 years) may imply that, in some 
settings, older children are a key source of pneumococcal 
transmission and are not fully protected in a 2p+1 schedule 
[91,92]. A school entry PCV booster dose may be necessary to 
interrupt transmission and increase herd protection [91].

4.3. (2a) Vaccinating HIV-infected adults

PCV is more immunogenic than PPV23 [23,57,65,69] and effi-
cacious in preventing recurrent episodes of VT-IPD in HIV- 
infected adults [65]. As per existing recommendations in 
many high-income countries [51,52], a single dose of PCV 
followed by a PPV23 booster for expanded serotype coverage 
could be given to HIV-infected adults in low-income countries 
to prevent VT-IPD [73,74]. As PCV is efficacious in vaccinees 
with low CD4+ cell count [65], it could be given immediately 
at HIV diagnosis to increase PCV coverage [93]. Since most sSA 
countries have considerably high ART coverage between 65% 
and 85% [94], adoption of this strategy will require a carefully 
considered integration of the proposed HIV-infected adult 
pneumococcal vaccine program into the mature ART pro-
grams to achieve a similar high coverage in the midst of 
competing health priorities [49,50,95,96]. In order to optimize 
local resources, PCV/PPV23 could concurrently be given with 
ART to HIV-infected adults [97].

PCV-mediated protection against IPD in HIV-infected adults 
has been reported to wane rapidly beyond 12 months, espe-
cially in those with low CD4+ cell count [65]. Revaccination 
with PCV or PPV is feasible [98], but of unproven clinical value. 
Choosing a PPV booster repeated may seem more rational as 
it is a cheaper vaccine and has higher serotype coverage, but 
also carries theoretical risks of generating hyporesponsiveness. 
This approach may also have additional indirect effect benefits 
if a PCV + PPV strategy could be shown to reduce carriage in 
this population. HIV-infected adults typically have higher 
pneumococcal carriage prevalence than HIV-uninfected adults 
[99,100], and may be part of a reservoir for residual VT circula-
tion in high HIV prevalence sSA settings. Whilst there is no 
substantial evidence to suggest they sustain transmission, 
they consequently represent a disproportionate health burden 
[101–103].

4.4. (2b) Vaccinating HIV-infected pregnant women

Where there are insufficient resources for targeting all HIV- 
infected adults, HIV-infected pregnant women could be prior-
itized for PCV protection. Their vaccination would come with 
the added benefit of indirect protection of their infant and 
hence would be particularly relevant in settings where the 
benefits of herd immunity from PCV pediatric programs are 
limited or neonatal acquisition of VT pneumococcal carriage 
commonly occurs before the infant can be directly protected 
by vaccination [46]. Transmission of pneumococci from HIV- 
infected mothers to their children has been reported 
[101,102], and this is also likely to be seen in infants not yet 
eligible for PCV vaccination; e.g. >40% of the infants in the 

Gambia [104,105], and Kenya [106,107] were reported to 
acquire pneumococci by the age of 4 weeks. Although HIV 
infection is reported to reduce the efficiency of maternal anti-
body transfer to the infant [108], maternal vaccination may 
still be useful since the (reduced) transfer ratio is applied to a 
higher vaccine-induced anti-pneumococcal capsular IgG in 
pregnancy. Thus, vaccination may directly protect the mother 
and fetus against pneumococcal carriage and disease 
[105,107,109], and interrupt VT transmission between mother 
and neonate, thereby providing cocooning immunity during 
neonatal life.

Maternal PCV vaccination has been shown to be safe. No, 
serious adverse pregnancy-associated outcomes has been 
reported from clinical trials where the average gestation at 
vaccination was between 27 and 38 weeks [110]. However, 
data on the IPD burden in neonates and mothers, as well as 
the benefits of maternal immunization from low-income coun-
tries are limited. A Cochrane systematic review highlighted 
that there is insufficient evidence to assess whether pneumo-
coccal vaccination during pregnancy could reduce infant 
infections [110].

National antenatal programs in most low-income countries 
are well established, with substantial service coverage [48]. 
Vaccine doses along with other services could be given to 
HIV-infected pregnant women who attend the antenatal 
clinics or otherwise ART clinics.

5. Expert opinion

PCV is widely used in global infant immunization programs 
and has been recommended for use in HIV-infected adults 
in high-income countries along with a PPV23 booster dose. 
In parts of Africa, there is a combination of substantial 
residual VT circulation among adults despite mature infant 
PCV programs, still relatively high adult HIV prevalence, 
and persistent high risk of IPD in HIV-infected adults. An 
adapted vaccination strategy could reduce the risk of IPD 
in HIV-infected adults. Here, we have presented a number 
of options through direct and indirect vaccine protection 
to enable the identification of an effective way forward.

We define the optimal vaccination strategy as one that 
maximizes the reduction in pneumococcal disease burden in 
HIV-infected adults in Africa. There are of course other factors 
as well that may determine whether a theoretically optimal 
strategy is indeed programmatically feasible. Important evi-
dence gaps exist to enable evaluation of the optimal pneu-
mococcal vaccine strategy. It is uncertain if a 2p+1 dosing 
schedule will work to achieve better herd protection than a 
3p+0 in settings where it has not yet been implemented, or 
whether an additional booster at school entry 2p+1 (+1) may 
be needed if protection against carriage wanes considerably in 
early childhood. Two cluster randomized trials in Malawi and 
Vietnam, in which 3p+0 and 2p+1 schedules are being com-
pared head to head in each trial, can be used to evaluate their 
impact on pneumococcal carriage [81,82], and could provide 
crucial information on their relative merits for providing herd 
protection.

While PCV7 vaccine efficacy against IPD in HIV-infected 
adults has been previously estimated at 74% [65], efficacy 
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against VT-carriage is unknown. Moreover, the duration of 
protection against both carriage and disease in HIV-infected 
adults is unknown, with some evidence for the latter pointing 
to a rapid decline after 12 months of vaccination [65]. Data on 
the interaction between ART (which may improve efficacy) 
and PCV shows no major impact of ART [25], but since 
PPV23 effectiveness/efficacy against IPD is contentious [60], 
dosing intervals to optimize efficacy and protection remains 
uncertain. More importantly, it is uncertain whether, in the era 
of routine PCV use in infants, HIV-infected adults substantially 
contribute to the residual VT transmission because of their 
elevated rates of carriage. Despite the importance of social 
interactions for pneumococcal transmission [111,112], only a 
few social mixing pattern studies have been conducted in low- 
income countries [112–116]. Moreover, data on whether HIV- 
infected adults have differential social mixing behavior 
compared to HIV-uninfected adults are not available. Thus, 
limiting our ability to precisely quantify transmission dynamics 
in HIV-infected adults.

Uncertainties around the benefits of maternal immuni-
zation with PCV also need to be addressed. The efficacy of 
maternal vaccination in protecting the neonate from car-
riage acquisition and the duration of vaccine-induced pro-
tection in the newborn need to be established [105,110]. 
Also, there are concerns that maternal vaccination could 
interfere with the benefits of infant priming doses by inhi-
biting the antibody responses particularly when high resi-
dual concentration of maternal placentally transferred 
antigen-specific antibodies are present at the time of 
infant immunization [117,118].
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