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Abstract

Background

Primarily impacting poor, rural populations, the zoonotic malaria Plasmodium knowlesi is

now the main cause of human malaria within Malaysian Borneo. While data is increasingly

available on symptomatic cases, little is known about community-level patterns of exposure

and infection. Understanding the true burden of disease and associated risk factors within

endemic communities is critical for informing evidence-based control measures.

Methodology/Principal findings

We conducted comprehensive surveys in three areas where P. knowlesi transmission is

reported: Limbuak, Pulau Banggi and Matunggung, Kudat, Sabah, Malaysia and Bacungan,

Palawan, the Philippines. Infection prevalence was low with parasites detected by PCR in

only 0.2% (4/2503) of the population. P. knowlesi PkSERA3 ag1 antibody responses were

detected in 7.1% (95% CI: 6.2–8.2%) of the population, compared with 16.1% (14.6–17.7%)

and 12.6% (11.2–14.1%) for P. falciparum and P. vivax. Sero-prevalence was low in individ-

uals <10 years old for P. falciparum and P. vivax consistent with decreased transmission of

non-zoonotic malaria species. Results indicated marked heterogeneity in transmission

intensity between sites and P. knowlesi exposure was associated with agricultural work (OR

1.63; 95% CI 1.07–2.48) and higher levels of forest cover (OR 2.40; 95% CI 1.29–4.46) and

clearing (OR 2.14; 95% CI 1.35–3.40) around houses. Spatial patterns of P. knowlesi expo-

sure differed from exposure to non-zoonotic malaria and P. knowlesi exposed individuals

were younger on average than individuals exposed to non-zoonotic malaria.
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Conclusions/Significance

This is the first study to describe serological exposure to P. knowlesi and associated risk fac-

tors within endemic communities. Results indicate community–level patterns of infection

and exposure differ markedly from demographics of reported cases, with higher levels of

exposure among women and children. Further work is needed to understand these varia-

tions in risk across a wider population and spatial scale.

Author summary

Plasmodium knowlesi is a species of malaria parasite found in wild macaque populations

which is now the main cause of human malaria in Malaysian Borneo. Spread from

macaques to people through infected mosquitoes, human P. knowlesi malaria cases have

primarily been reported in adult men working in forests or plantations. However, little

data is available on the extent of asymptomatic infections or people exposed to P. knowlesi
not reporting to clinics. We conducted comprehensive surveys of three case study com-

munities in Malaysian Borneo and Palawan, the Philippines with varying numbers of P.

knowlesi cases reported. In addition to testing for infection, we measured species-specific

antibody responses to P. knowlesi and other malaria species to identify exposed individu-

als. Few asymptomatic infections were detected and varying levels of P. knowlesi exposure

was detected between sites. P. knowlesi exposure was identified in both men and women

and associated with farm work and forest and clearing around the house. Spatial patterns

and risk factors for P. knowlesi differed from other malaria species, highlighting the need

for knowlesi specific disease control measures. Results suggest more people are exposed to

P. knowlesi than are identified at clinics and exposure to P. knowlesi may occur in different

demographic groups and geographic areas than previously reported.

Introduction

After the initial recognition of a large number of human cases of the zoonotic malaria Plasmo-
dium knowlesi in 2004 and advent of routine diagnosis of malaria cases by molecular methods,

increasing numbers of human P. knowlesi cases have been reported in Southeast Asia and

P. knowlesi is now the most common cause of human malaria in Malaysian Borneo [1–3].

Although regional control programmes have reduced the incidence of other malaria species in

Malaysia and the Philippines, such as P. falciparum and vivax, the emergence of P. knowlesi
presents a challenge to malaria elimination programmes. Despite increasing amounts of data

available for symptomatic malaria cases presenting at hospital facilities, little is known about

patterns of P. knowlesi exposure and infection at a community level [4].

Effectively targeting resources to identify and control P. knowlesi requires a detailed under-

standing of environmental and social risk factors. Carried by long and pig-tailed macaques

(Macaca fasicularus and M. nemestrina), environmental changes affecting contact between

people, mosquito vectors and simian hosts are believed to contribute to this apparent emer-

gence of P. knowlesi in people [5, 6]. Anopheles balabacensis, the main knowlesi vector, has

been associated with forest environments but is also found in peridomestic and agricultural

areas [7, 8]. Associations between deforestation and increases in village-level incidence have

been shown for clinical cases but this may not fully reflect exposure in the wider community
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[9]. Additionally, multiple studies have reported asymptomatic P. knowlesi infections, includ-

ing in women and children, demographic groups comprising a minority of cases reported to

facilities [10–14].

Patterns of community-level exposure can be assessed by the prevalence of specific antibod-

ies against malaria parasites; these antibodies reflect exposure to previous infection and can be

used to characterise the level of transmission and identify areas or groups with higher trans-

mission [15]. These serological markers may be particularly useful in low transmission set-

tings, where the probability of detecting infections is low [16]. Seroconversion rates derived

from age specific sero-prevalence have also been shown to be closely correlated with more tra-

ditional measures of malaria transmission intensity, such as entomological inoculation rates or

parasite prevalence, and can be used to identify differences in spatial patterns in transmission

[17, 18]. Further, as these antibody responses represent exposure over time, longer term trans-

mission patterns and temporal changes in transmission can be evaluated [19]. There are an

increasing number of reagents for serological studies available for both P. falciparum and P.

vivax e.g. [17, 20, 21]but antigens specific for P.knowlesi have only recently been described[22].

This study aimed to characterise these community level patterns of serological exposure to

and prevalence of asymptomatic parasitemia of P. knowlesi and other malaria species in three

case study communities where P. knowlesi transmission has been reported; a largely deforested

and highly fragmented site at Matunggong, Kudat, an area with large patches of secondary for-

est bordering large scale clearing for an oil palm plantation in Limbuak, Pulau Banggi in

Sabah, Malaysia and an area with intact secondary forest and some remaining primary forest

in Bacungan, Palawan, The Philippines (Fig 1). These areas were selected as areas representa-

tive of locations were P. knowlesi transmission is occurring based on district hospital reports

and were the sites of integrated entomology, primatology and social science studies within a

wider research programme on risk factors for P. knowlesi (http://malaria.lshtm.ac.uk/

MONKEYBAR). P. knowlesi is the main cause of reported human malaria in both the Matung-

gong and Limbuak sites while only few sporadic P. knowlesi cases have been reported from

Bacungan [23–25]. Based on reporting of symptomatic cases to the national malaria pro-

grammes, the annual parasite incidence per 1000 people for P. knowlesi in 2014 was 12 for

Matunggong, 2 for Limbuak and 0 for Bacungan.

Methods

Ethics approval and informed consent

This study was approved by the Medical Research Sub-Committee of the Malaysian Ministry

of Health (NMRR-14-713-21117), the Institutional Review Board of the Research Institute for

Tropical Medicine, Philippines and the Research Ethics Committee of the London School of

Hygiene and Tropical Medicine (8340). Written informed consent was obtained from all par-

ticipants or parents or guardians and assent obtained from children under 18 in this study and

all methods were performed in accordance with relevant guidelines and regulations.

Sampling methods

This study involved comprehensive sampling of all individuals residing within the study areas.

Study sites were selected based on the locations of previously reported clinical P. knowlesi
cases and all households within these communities were enumerated and geo-located. All indi-

viduals were asked to participate in the study and consenting individuals were interviewed on

demographic characteristics, movement patterns, malaria prevention methods and land use

practices. Individuals were excluded if they were less than 3 months old, had not primarily

resided in the area for the past month or could not be reached after three attempts to contact
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them, including during evenings and weekends. Finger-prick blood samples were collected to

test for malaria infection and exposure; these included blood smears to detect malaria parasites

by microscopy and approximately 200μl whole-blood specimens collected in a tube containing

Fig 1. Study site locations in Matunggong, Kudat and Limbuak, Pulau Banggi in Sabah, Malaysia and Bacungan, Palawan, Philippines.

https://doi.org/10.1371/journal.pntd.0006432.g001
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EDTA (Becton-Dickinson, Franklin Lakes, New Jersey) and three 20μl spots stored on filter

paper (3MM, Whatman, Maidstone, United Kingdom). Filter paper was dried and stored with

desiccant at 4˚C.

Detection of malaria infection

All blood smears were examined by trained malaria microscopists. DNA was extracted from

filter paper or 10 μl blood pellets using the Chelex-100 boiling method and a nested polymer-

ase chain reaction (PCR) method targeting the Plasmodium small subunit ribosomal RNA

(ssRNA) was used to identify malaria infected individuals, as described by [10, 26]. This assay

used the genus-specific primers rPLU1 (5’-TCA AAG ATT AAG CCA TGC AAG TGA-3’)

and rPLU5 (5’-CCT GTT GTT GCC TTA AAC TTC-3’) for nest 1 and rPLU3 (5’-TTT TTA

TAA GGA TAA CTA CGG AAA AGC TGT-3’) and rPLU4 (5’-TAC CCG TCA TAG CCA

TGT TAG GCC AAT ACC-3’) for nest 2. Thermal cycling conditions for primary and nested

PCRs were 35 cycles at 94˚C, 60˚C and 72˚C. Samples positive for the Plasmodium genus were

then screened using species specific primers targeting the ssRNA region; for P. knowlesi these

included PkF1140 (5’-GATTCATCTATTAAAAATTTGCTTC-3’) and PkR1150 (5’ GAGT

TCTAATCTCCGGAGAGAAAAGA 3’) for 35 cycles at 50˚C, 72˚C and 94˚C. All products

were visualised on a 2% agarose gel. PCR for malaria infection was performed at laboratories

at the Universiti Sabah Malaysia in Malaysia and Research Institute for Tropical Medicine in

the Philippines, with PCR validation of a subset of samples at the London School of Hygiene

and Tropical Medicine in the UK.

Serological detection of exposure

Enzyme-linked immunosorbent assays (ELISA) were performed as previously described [27].

Briefly, 3 mm disc was excised from each dried blood spot and incubated in reconstitution

buffer (PBS/tween with sodium azide) overnight at 4˚C. Antibodies were eluted from the

blood spots equivalent to a 1:100 dilution of whole blood or a 1:200 dilution of serum [16].

Antibody responses were measured against apical membrane antigen-1 or the 19 kDa frag-

ment of merozoite surface protein-1 for P. vivax (PvAMA-1 and PvMSP-119, respectively),

P. falciparum (PfAMA-1 (PMID: 17192270; PMID: 19165323) and PfMSP-119 (PMID:

8078519) and P.knowlesi SERA3 antigen 2[22]. The Pk serine repeat antigen (SERA) 3 antigen

2 (PKNH_0413400; chromosome 4) is a novel recombinant protein, N-terminally located

between positions 826–998 aa, inclusive. SERA3 (1079 aa) belongs to a multigene family

whose members encode a papain-like cysteine protease domain (ref: PMID: 21423628). In

P falciparum, the N-terminal domain of SERA 5 is showing promise as a potential vaccine can-

didate (ref: PMID: 24886718, PMID: 27343834). The recombinant protein was expressed in

Escherichia coli and affinity purified by a GST tag. Knowlesi -exposed hospital clinical case

control samples showed antigen specific reactivity to the SERA3 antigen 2 recombinant when

compared to responses from European malaria naïve and Ethiopian vivax-exposed serum sam-

ples (Herman et al. submitted) Eluates were tested in duplicate at a final concentration of

1:1000 for all antigens except 1:2000 for PfAMA-1. In addition, blank wells and a dilution

series of the appropriate positive plasma pool were added per plate. Positive controls based on

a hyper-immune endemic adult Tanzanian pool (PMID: 15792998), a lyophilised anti-malaria

patient sample (NIBSC, UK; 72/96) and pooled Pk-exposed hospital serum samples were used

to assay for P. falciparum, P. vivax and P. knowlesi antigens, respectively. Polyclonal rabbit

anti-human IgG-HRP (Dako, Denmark) was used at 1/15,000 dilution and plates were devel-

oped using TMB (One component HRP microwell substrate, Tebu-bio). Optical density (OD)

values were measured at 450 nm with a microplate reader. Values in excess of 1.5 CV between
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duplicates were considered fails and re-ran. OD values were corrected by subtracting the back-

ground of the blank well per plate. For P. falciparum and P. vivax OD readings, values were

normalised between plates using a standardised control. Normalisation was not done for P.

knowlesi results due to the lack of standard control. All serological analysis was performed at

the Universiti Malaysia Sabah and the London School of Hygiene and Tropical Medicine.

Environmental classification

All households and roads within these areas were geo-located using a hand-held GPS (global

positioning system). Land cover maps were derived from LANDSAT 8 30m resolution satellite

images [28] and supervised classification was performed using random forests [29, 30]. In

order to generate training data, high- resolution aerial images of areas within study sites were

produced using the Sensefly eBee unmanned aerial vehicle flown at 400 metres above ground

level (UAV or drone; Sensefly, Cheseaux-sur-Lausanne, Switzerland) and processed using

Postflight Terra 3D (Pix4D SA, Lausanne, Switzerland) as described by [31]. These data were

manually digitised and classified as forest, agricultural land (including cropland and agrofor-

estry such as rubber and palm oil), open areas and water bodies. Additional data on elevation,

aspect and slope was extracted from the ASTER global digital elevation model [32]. All data

were resampled to 30m per pixel and datasets including topographic variables, distance from

roads and houses, normalised differential vegetation indices (NDVI) and Landsat satellite data

were included in the initial model. Random forest models were run using 10,000 trees to

ensure stability and were run iteratively with least predictive variables excluded at every run

[33]. A random subset of the training data for each site was withheld to independently validate

the classification; estimated classification accuracy was 88%, 97% and 85% for Matunggung,

Limbuak and Palawan respectively (Fig 2).

These classified land cover maps were used to calculate distance from the household to the

forest edge. The proportions of different land types surrounding all households were evaluated

for 100m, 500m and 1000m buffer radii. Additionally, the level of forest fragmentation was

assessed within 500m and 1000m of each household; this was represented as the ratio of forest

perimeter to forest area as described by [34]. All geographic data was stored and visualised in a

Geographic Information System using ArcGIS (ArcGIS, Redlands, USA) and all other analysis

was performed using R statistical software (R Foundation for Statistical Computing, Vienna,

Austria, http://www.R-project.org).

Statistical analysis and data management

Questionnaire data was collected electronically using Pendragon Forms VI (Pendragon Soft-

ware Corporation, Chicago, USA) and analysed using R statistical software. To define sero-

positive individuals, mixture models were fit for normalised optical densities (ODs), with the

distribution of ODs modelled as two Gaussian distributions. Cut off values to define sero-prev-

alence for each antigen were defined as the mean OD of the sero-negative population plus 3

standard deviations for P. falciparum and P. vivax as described by [16]. For the P.knowlesi anti-

gen a more parsimonious cutoff value was defined as the mean OD plus 5 standard deviations

due to a lack of prior data. Because the assays were run in different laboratories, cut off values

were defined separately for each antigen, malaria species and location (Palawan and Sabah).

For P. falciparum and P. vivax, individuals were considered positive if they were positive for

either MSP-1 and/or AMA-1. Reversible catalytic models were fit to age sero-prevalence data

using maximum likelihood methods; these models were then used to generate age sero-preva-

lence curves and estimate the seroconversion rate (SCR) [17]. Evidence of historical changes

in transmission was explored by using profile likelihood plots. Models with two SCR were
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assessed by likelihood ratio tests and used if the fit was significantly better (p< 0.05) than

models with a constant seroconversion rate [19]. Models were fit separately for each parasite

species and site.

Risk factors associated with P. knowlesi sero-positivity were evaluated using multivariate

logistic regression, with household included as a random effect to account for correlation

between individuals from the same household. An additional model was developed to compare

individuals sero-positive for P. knowlesi with those sero-positive for non-zoonotic malaria spe-

cies. Explanatory variables included age, gender, site, individual and household level farming

activities, residence in the area, elevation and distance to forest. Additionally, the proportions

and configuration of different land types were extracted for each household at 100m, 500m

and 1000m radii and categorised as greater or less than 30% coverage within a specific radius

in the final model. Univariate analysis was conducted for all explanatory variables and vari-

ables with p< 0.2 were included in multivariate analyses. For highly correlated variables (such

as land cover proportions at different radii), single variables were selected based on marginal

increases in Akaike Information Criterion (AIC). The final adjusted models were developed

by retaining all variables significant at a 0.05 level and variables were added in a forward step-

wise fashion to check for interactions. Potential residual spatial autocorrelation of exposure to

P. knowlesi was assessed separately for all sites using Moran’s I.

Correlation between spatial patterns of exposure to P. knowlesi and nonzoonotic malaria

species was explored through correlograms, plots of spatial autocorrelation with lag distances.

First, ODs were log-transformed and adjusted for age by linear regression as described by [18].

For each site, cross-correlograms of antibody responses to P.knowlesi and each other antigen

were plotted. Correlation ranges were determined by significance values (p< 0.05) of individ-

ual bins of lag distances of 500m. Pairwise correlation between antibody responses was deter-

mined using a simple Mantel test to test the significance of associations [35, 36].

Results

The total populations resident in the sites were 1260 in Matunggong, 1009 in Limbuak and

686 in Bacungan. Surveys were conducted from October 2014 to January 2015 in Limbuak

(n = 795) and Matunggong (n = 1162) sites in Sabah and in September 2014 in Bacungan, Pala-

wan (n = 546). During this time, no clinical P. knowlesi cases were reported from the Bacungan

study site while one P. knowlesi case was reported in the Limbuak site and two cases were

Fig 2. Land use classification of study sites. a. Highly deforested and fragmented site at Matunggong, Kudat, Sabah, Malaysia; b. Some forested

area bordering large scale clearing in Limbuak, Pulau Banggi, Sabah, Malaysia; c. Mostly intact forest in Bacungan, Palawan, Philippines.

https://doi.org/10.1371/journal.pntd.0006432.g002
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reported in Matunggong site. The median age of participants was 24 years (age range 3

months– 99 years) and similar proportions of men and women were sampled in all study sites.

While only 22% (538/2503) of individuals reported their primary occupation as farming or

plantation work, the majority of individuals (74%; 1846/2503) reported their household

engaged in some agricultural activities (Table 1). The proportion of forest cover within 1km of

the houses in each site ranged from 39% in Matunggong, 55% in Bacungan to 82% in Limbuak

(Fig 2). The Matunggong site was the most highly fragmented, with a forest perimeter to area

ratio of 0.03 compared to 0.01 in Bacungan and 0.005 in Limbuak.

Infection with malaria

Two microscopy positive individuals were identified from the Matunggong, Kudat site; these

were both subsequently identified as P. knowlesi mono-infections by PCR. All PCR infections

were re-confirmed at the laboratory in the U.K. Both of these individuals were male plantation

workers (ages 21 and 25) residing in the same household. An additional two individuals in

Table 1. Demographic and environmental characteristics of included participants.

Limbuak, Pulau Banggi

(n = 795)

Matunggong, Kudat

(n = 1162)

Bacungan, Palawan

(n = 546)

Demographic factors

Gender

Female, % (n) 52.5 (417) 51.8 (602) 43.6 (238)

Male, % (n) 47.5 (378) 48.2 (560) 56.4 (308)

Age in years, median (IQR) 22 (9–44) 25 (10–47) 25 (11–44)

Farming or plantation work as main occupation,

% (n)

14.2 (113) 30.6 (356) 12.6 (69)

Household farm activities, % (n) 68.1 (542) 88.6 (1030) 50.1 (274)

Stay overnight outside village, % (n) 8.2 (65) 13.6 (161) 29.5 (161)

Environmental factors

Elevation (metres above sea level), median

(IQR)

11 (8–15) 50 (35–75) 84 (77–114)

Distance to forest edge (metres), median (IQR) 30 (30–60) 95 (68–120) 67 (30–108)

Proportion of cleared areas around house (%),

median (IQR)

Within 100m 0.43 (0.21–0.65) 0.63 (0.46–0.74) 0.39 (0.26–0.61)

Within 500m 0.14 (0.10–0.24) 0.38 (0.28–0.47) 0.22 (0.16–0.26)

Within 1000m 0.14 (0.09–0.17) 0.37 (0.31–0.39) 0.18 (0.16–0.20)

Proportion of agriculture around house (%),

median (IQR)

Within 100m 0.14 (0.03–0.31) 0.33 (0.23–0.49) 0.43 (0.32–0.60)

Within 500m 0.06 (0.05–0.14) 0.38 (0.28–0.48) 0.39 (0.36–0.42)

Within 1000m 0.05 (0.03–0.10) 0.31 (0.24–0.36) 0.37 (0.29–0.39)

Proportion of forest around house (%), median

(IQR)

Within 100m 0.31 (0.12–0.50) 0.03 (0–0.08) 0.08 (0–0.20)

Within 500m 0.71 (0.59–0.81) 0.22 (0.13–0.34) 0.37 (0.32–0.43)

Within 1000m 0.79 (0.76–0.86) 0.33 (0.27–0.39) 0.44 (0.40–0.52)

Forest area to perimeter ratio around house,

median (IQR)

Within 500m 0.02 (0.01–0.02) 0.05 (0.04–0.06) 0.04 (0.03–0.04)

Within 1000m 0.01 (0.01–0.01) 0.03 (0.03–0.04) 0.04 (0.03–0.04)

https://doi.org/10.1371/journal.pntd.0006432.t001
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Matunggong were microscopy negative but identified as P. knowlesi infected by molecular

methods; these included a three year old girl and 33 year old woman residing in different vil-

lages within the study site. Only one out of these four infected individuals identified self-

reported history of fever. None of the survey participants in either the Limbuak or Bacungan

sites were positive by microscopy or PCR and no infections with any other malaria species

were identified in any participants.

Serological assessment of exposure to P. knowlesi
Overall, 7.1% (178/2503) of the population surveyed was seropositive to P. knowlesi (Fig 3).

Exposure varied substantially between study sites, with the highest P. knowlesi antibody preva-

lence detected in Limbuak, Pulau Banggi (11.7%; 93/795) followed by 6.8% (79/1162) in

Matunggong Kudat. Bacungan, Palawan had the lowest sero-prevalence (1.1%; 6/546). Similar

reactivity to P. knowlesi was observed in men (optical density (OD): med: 0.035, IQR: 0.006–

0.094) and women (OD: median: 0.035, IQR: 0.007–0.089) and gender was not significantly

associated with P. knowlesi sero-positivity (OR: 0.99, 95% CI: 0.71–1.37, p = 0.95).

Antibody prevalences to P. falciparum and P. vivax were higher in all sites, with 16.1% (364/

2266) of individuals sero-positive to one or both P. falciparum antigens and 12.6% (270/2141)

positive for one or more P. vivax antigens. Sero-prevalence to P. falciparum was 16.9% (196/

1162) in Matunggong, 13.5% (107/795) in Limbuak and 10.4% (61/587) in Bacungan. In con-

trast, reactivity to P. vivax was highest in Limbuak (16.7%; 133/795) with sero-prevalences of

6.9% (80/1162) and 9.7% (57/587) in Matunggong and Bacungan respectively. Due to insuffi-

cient samples and non-systematic errors in labelling, results for all antigens were not available

for all individuals. Out of individuals with complete test results for all antigens, 25.7% (499/

1941) of participants were sero-positive to at least one species of malaria and 7.9% (54/1941)

were sero-positive for two or more malaria species. Of individuals exposed to P. knowlesi,
29.7% (53/ 178) were also positive for P. falciparum or P. vivax antigens. There was no evidence

of correlation between P. knowlesi and other antigens tested (S1 Fig).

Sero-prevalence was positively associated with increases in age for all antigens tested. How-

ever, despite this, seroreactivity, including individuals with high antibody titres (S2 Fig), was

still detected in the youngest age groups and 4.2% (39/921) individuals under 15 years had

antibodies to P. knowlesi, 3.5% (29/821) had antibodies to P. falciparum and 2.9% (23/792) to

P. vivax. Changes in age sero-prevalence were more pronounced for P. falciparum and P.

vivax, with 32.9% (78/237) and 28.1% (64/228) reactivity to P. falciparum and P. vivax in indi-

viduals over the age of 60 years. In contrast, antibodies for P. knowlesi were detected in 9.4%

(25/265) of individuals over 60 years old and the highest sero-prevalence was detected in adults

from 45–60 years old (11.6%; 43/370). As reactivity to P. knowlesi was low and not evenly

Fig 3. Violin plots of antibody density by age group: a. Matunggong, Kudat, b. Limbuak, Pulau Banggi, c. Bacungan

Palawan.

https://doi.org/10.1371/journal.pntd.0006432.g003
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distributed through the population, seroconversion rates (SCR) for P. knowlesi could not be

calculated. Historical changes in falciparum transmission intensity were apparent in all sites

and SCR models fitted with two forces of infection suggest substantial reductions in P. falcipa-
rum transmission occurred 18–30 years ago (p< 0.05) (Fig 4). Strong evidence of decreased

transmission intensity for P. vivax was only seen in Limbuak, where transmission decreased

over 25-fold in the past 20 years.

Factors associated with P. knowlesi sero-positivity

Demographic and environmental characteristics of survey participants are summarised in

(Table 1). In addition to age and site, reporting farm or plantation work as a primary occupa-

tion was positively associated with P. knowlesi sero-positivity (Table 2). Higher proportions of

forest cover within 1km of the household and cleared areas within 500m of the house were

both associated with increased odds of P. knowlesi positivity. While forest fragmentation, ele-

vation and agricultural land around the house were significant within the univariate analysis,

none of these variables were significant in the final multivariate model (Supplementary

Fig 4. Seroprevalence curves for each location used to calculate SCRS (λ). a. Pulau Banggi, Sabah (Pf λ1: 0.0196

(0.0078–0.0492); Pf λ2: 0.0008 (0.0002–0.0031); Pv λ1: 0.0185 (0.0136–0.0248)) b. Matunggong, Kudat ((Pf λ1: 0.0588

(0.0198–0.1746); Pf λ2: 0.0085 (0.0063–0.0116); Pv λ: 0.0039 (0.0024–0.0064)) c. Bacungan, Palawan (Pf λ1: 0.1441

(0.0175–1.1892); Pf λ2: 0.0031 (0.0012–0.0086); Pv λ: 0.0086 (0.0044–0.0166)).

https://doi.org/10.1371/journal.pntd.0006432.g004

Table 2. Multivariate analysis of risk factors for P. knowlesi seropositivity. (comparison of P. knowlesi exposed

individuals with non-exposed individuals).

Adjusted OR (95% CI) P value

Age

Under 15 years - < 0.001

15–45 years 2.05 (1.30–3.22)

45–60 years 2.94 (1.70–5.11)

Over 60 years 2.46 (1.32–4.58)

Site

Palawan - < 0.001

Mainland Kudat 4.30 (1.66, 11.15)

Pulau Banggi 10.83 (4.50, 26.10)

Main occupation farm or plantation work

No - 0.025

Yes 1.63 (1.07, 2.48)

Forest cover within 1km 0.004

Less than 30% -

Over 30% forest cover 2.40 (1.29, 4.46)

Proportion of cleared/ open area within 500m of house 0.001

Less than 30% -

Over 30% cleared 2.14 (1.35, 3.40)

https://doi.org/10.1371/journal.pntd.0006432.t002
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information, S1 Table). Similar proportions of men and women reacted to P. knowlesi in all

sites and gender was not associated with sero-positivity.

Individuals reacting to P. knowlesi were more likely to be younger than individuals sero-

positive for only non-zoonotic malaria species (Table 3). Forest cover was not associated with

exposure to non-zoonotic malaria and malaria positive individuals residing in areas with high

forest cover around the house had 4.86 (95% CI: 2.30–11.37) the odds of being positive for

P. knowlesi. Similarly, cleared areas around the house were also positively associated with

P. knowlesi cases compared to other malaria species.

Based on Moran’s I, there was no evidence of residual spatial autocorrelation for P. knowlesi
antibody responses (Moran’s I p> 0.2 for all sites). There was no significant spatial correlation

detected between age-adjusted antibody responses for P. knowlesi and other malaria species

for either Matunggong or Limbuak (p> 0.30 for all pairwise comparisons). Comparisons

between P. knowlesi and other malaria species could not be evaluated for Bacungan due to the

low prevalence of P. knowlesi sero-positivity.

Discussion

This is the first study to describe exposure to P. knowlesi through antigen specific antibody

responses and associated risk factors and is one of few studies to assess P. knowlesi carriage

prevalence at a community level. Results indicate spatial and temporal patterns of P. knowlesi
transmission differ markedly from other non-zoonotic malaria species within the region.

Although P. knowlesi sero-positivity was associated with some landscape attributes within

these communities, extensive cross sectional surveys are needed to identify ecological risk fac-

tors across a broader geographic scale.

Sero-prevalence data indicate distinct heterogeneities in P. knowlesi transmission intensity

between sites. Although formal comparisons between P. knowlesi infection and exposure could

not be undertaken due to the low prevalence of parasite carriage, these geographical differ-

ences in transmission mirror hospital-based reporting rates in the study sites at Kudat, Pulau

Banggi and Palawan [23–25]. These results also highlight the utility of serological techniques

to identify differences in transmission intensity in settings where the sensitivity of parasite

Table 3. Multivariate analysis of risk factors for P. knowlesi seropositivity in malaria exposed individuals. (com-

parison of P. knowlesi exposed individuals with individuals exposed to other non-zoonotic malaria species).

Adjusted OR (95% CI) P value

Age

Under 15 years - 0.05

15–45 years 0.72 (0.37–1.39)

45–60 years 0.53 (0.26–1.06)

Over 60 years 0.38 (0.18–0.82)

Site

Palawan - < 0.001

Mainland Kudat 3.79 (1.50, 11.00)

Pulau Banggi 6.55 (2.88, 17.68)

Proportion of forest within 1km of house

Less than 30% - < 0.001

Over 30% cleared 4.86 (2.30, 11.37)

Proportion of cleared/ open area within 500m of house

Less than 30% - 0.001

Over 30% cleared 2.70 (1.60, 4.66)

https://doi.org/10.1371/journal.pntd.0006432.t003
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prevalence surveys is limited by the scarcity of infected individuals and suboptimal diagnostics.

This is the first time these knowlesi-specific antigens have been used at a population level to

assess species-specific exposure to malaria. Although high levels of homology between P.

knowlesi and P. vivax indicate the possibility of cross reactivity between antigens, relatively low

numbers of individuals were identified as sero-positive for both knowlesi and vivax (2%; 43/

2102 individuals with results for both assays) and individuals could have been plausibly

exposed to both species due to the co-endemicity of these species within this region. Addi-

tional work has been done to characterise response to P. knowlesi in vivax-exposed individuals

and validate these antigens for population-based studies[22].

Changes in seroconversion rates can also reflect temporal changes in malaria transmission.

In Sabah, state-wide malaria notification records describe dramatic decreases in clinical P. fal-
ciparum and P. vivax cases within the past 20 years following the scale up of malaria control

and elimination programmes [2]. The Philippines has also reported a substantial decline in the

number of malaria cases reported in the past few decades, most notably for P. falciparum[37].

These changes are evident in seroconversion rates to non-zoonotic malaria species from the 3

sites with over 5-fold difference between current and previous SCRs. P. knowlesi exposure was

identified in children under 5 in all sites, suggesting recent or on-going transmission albeit at a

low level. Further work is needed to refine P. knowlesi serological analysis to allow for antigenic

variation, identify further antigenic targets and assess the differential responsiveness of indi-

viduals and longevity of antibody responses [38].

Despite these similarities between existing case data and community-level exposure to P.

knowlesi, levels of exposure between different demographic groups varied markedly from clini-

cal case reports. While clinical P. knowlesi has been commonly reported in adult men, men

and women had similar antibody reactivity to P. knowlesi antigens in all sites [23, 39]. Within

Kudat district, wide age distributions and family clusters of knowlesi cases have previously

been described; however, from 2012–2015, 73% (84/115) and 77% (27/35) of all clinical cases

reported from Kudat and Pulau Banggi respectively were men [23]. Asymptomatic knowlesi

carriage has been detected in higher proportions of women by this study and other studies;

however these results are extremely limited by sampling design and the small numbers of

infected individuals detected [10, 12]. As forest and agricultural activities have been identified

as risk factors for clinical P. knowlesi infection, more men could develop clinical infections due

to higher exposure or number of bites; however, this requires further research to assess [40].

Larger scale population-based cross sectional surveys are needed to determine if these patterns

occur in the wider community and if P. knowlesi affects groups which may be underrepre-

sented by current passive surveillance systems.

P. knowlesi exposure was also associated with landscape factors. Both the proportion of for-

est cover and cleared areas around the household were positively associated with knowlesi

sero-positivity, potentially reflecting the higher vectorial capacity and sporozoite rates reported

in secondary forest within these study sites [7]. Although plantation or farm work as a primary

occupation was associated with increased exposure and previous reports have described associ-

ations between P. knowlesi and forest activities, data on movement into different environments

was not available for all survey participants [39, 41]. Instead, to explore the potential range of

spatial interactions between people and mosquito vectors, proportions of habitat were evalu-

ated at different buffer distances around houses. The significance of both clearing and forest

areas at different radii suggests the importance of edge effects, transition areas between habi-

tats where increased overlap of human, macaque and mosquito populations may occur [9, 42,

43]. Despite this, no associations were identified between metrics of fragmentation or distance

to forest edges; this may reflect the limited environmental variation within these small spatial

scales. Future studies could assess the importance of these variables across different ecotypes as
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well as collect more detailed data on the human movement into different environments, par-

ticularly during peak mosquito biting times.

These spatial patterns differed markedly from exposure to other non-zoonotic malaria spe-

cies. Individuals with antibodies to P. knowlesi were more likely to reside in areas with higher

proportions of forest cover; this may reflect differences in disease dynamics between species or

temporal changes in transmission. Because of the longevity of antibody responses and the

rapid rates of land use change within these areas, seroreactivity to non-zoonotic species is

probably more likely to be associated with past rather than current environmental factors. The

main mosquito vector species of P. knowlesi, Anopheles balabacensis, was historically incrimi-

nated as the main vector of other human malaria species within these same areas [44, 45].

While these vectors have been primarily associated with forest habitats, high vector densities

have also been reported in small scale farms and other habitat types [7, 42, 46]. Deforestation

and increased application of vector control measures may have triggered changes in vector

composition and biting preferences; similarly, habitat changes and encroachment of human

settlements into forest areas may have also led to changes in macaque population densities and

closer contact between macaques, people and mosquito vectors [6, 47].

The main limitations of this study are the non-randomised population sampling approach

and limited geographical scale. While this study describes fine scale patterns of malaria expo-

sure and infection within these three case study communities, these results cannot be general-

ised to extrapolate P. knowlesi risks across wider populations. As this study surveyed three

relatively homogenous populations, there was minimal variation in environment, ethnicity,

socioeconomic status and access to healthcare within each site. Identifying environmental and

population-level risk factors will require randomised sampling across a wider ecological gradi-

ent; community level data on presence and absence of exposure and infection are required to

understand spatial heterogeneity of disease transmission and develop and refine predictions of

disease risk [48]. Additionally, extensive surveys of parasite prevalence may allow the applica-

tion of genetic approaches to track parasite diversity and transmission and explore the roles of

host and parasite genetic factors.

Despite these limitations, this study describes P. knowlesi infection and exposure within

these communities and illustrates how serologic markers can be used to describe differences in

transmission intensity between malaria species in low transmission settings. Results from

these surveys indicate patterns of P. knowlesi exposure and infection within the community

may be substantially different from cases detected by passive surveillance systems. Cross sec-

tional surveys across a broader geographical scale are needed to describe spatial variation in

transmission intensity and identify associated environmental and population-based risk fac-

tors. Integration of serology into these surveys would provide vital information on rare infec-

tions for control programmes [49].
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